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Abstract In the current study, the applicability and scope
of 3D-QSAR models (CoMFA and CoMSIA) to comple-
ment virtual screening using 3D pharmacophore and
molecular docking is examined and applied to identify
potential hits against Mycobacterium tuberculosis Enoyl
acyl carrier protein reductase (MtENR). Initially CoMFA
and CoMSIA models were developed using series of
structurally related arylamides as MtENR inhibitors.
Docking studies were employed to position the inhibitors
into MtENR active site to derive receptor based 3D-QSAR
models. Both CoMFA and CoMSIA yielded significant
cross validated q2 values of 0.663 and 0.639 and r2 values
of 0.989 and 0.963, respectively. The statistically signif-
icant models were validated by a test set of eight
compounds with predictive r2 value of 0.882 and 0.875
for CoMFA and CoMSIA. The contour maps from 3D-
QSAR models in combination with docked binding
structures help to better interpret the structure activity
relationship. Integrated with CoMFA and CoMSIA pre-
dictive models structure based (3D-pharmacophore and
molecular docking) virtual screening have been employed
to explore potential hits against MtENR. A representative
set of 20 compounds with high predicted IC50 values were
sorted out in the present study.
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Introduction

Mycobacterium tuberculosis contains unique signature fatty
acids, the mycolic acids that are unusually long chain
R-alkyl, β-hydroxy fatty acids of 60-90 carbons [1]. The
TB-specific drugs isoniazid (isonicotinic acid hydrazide
(INH)) and ethionamide have been shown to target the
synthesis of these mycolic acids, which are central
constituents of the mycobacterial cell wall. Among the
enzymes involved in mycolic acid biosynthesis, the
NADH-dependent enoyl acyl carrier protein reductase
(MtENR) encoded by the Mycobacterium gene inhA is a
key catalyst in mycolic acid biosynthesis. Studies over
the years have established that MtENR is the primary
molecular targets of INH [2], the drug that for the past
40 years has been, and continues to be, the frontline agent
for the treatment of TB. As a prodrug, INH must first be
activated by KatG, a catalase-peroxidase that oxidizes
INH to an acyl radical that binds covalently to NADH, the
cosubstrate for MtENR [3]. The INH-NADH adduct then
functions as a potent inhibitor of MtENR. The requirement
for INH activation opened a backdoor for the development
of drug resistance by M. tuberculosis. Indeed, KatG-
associated mutations account for 50% of the INH-resistant
clinical isolates [4]. Thus, direct MtENR inhibitors that
avoid this activation requirement would be promising
candidates for the development of novel antitubercular
agents. Recent studies focused on the development of
inhibitors targeting MtENR directly without the requirement
for activation. Several series of direct MtENR inhibitors
including pyrazole derivatives, indole-5-amides [5], alkyl
diphenyl ethers [6], pyrrolidine carboxamides [7] and
arylamides [8] have been identified that show good
inhibitory potency. Despite these and other known inhibitors,
more structurally diverse inhibitors of MtENR need to be
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discovered for improving the understanding of the biological
function of MtENR and to discover its potential therapeutic
indications. With a view to identify potential compounds
with higher predicted potencies, in the present study, an
attempt of ligand and structure-based rational searching of
putative active site binders of MtENR was made using the
available crystal structure of MtENR-Genz10850 [5] and
series of arylamides with known inhibitory activity [8]. Such
a method allows combining receptor-based and ligand-based
approaches, thus utilizing most of the currently available
structural data. The design of new compounds should
never be based on one single approach. Although any
single approach either ligand based approaches like
QSAR or 3D pharmacophore or structure based approach
like molecular docking can be used to design new
compounds but better results can be achieved using the
consensus of both ligand and structure based design
approaches. The integrated ligand and receptor based
approach has been successfully used by our group for the
identification of M. tuberculosis Thymidine monophos-
phate kinase inhibitors as novel antitubercular lead
compounds [9]. A good approach to design a putative
library targeting a particular protein might be to combine
3D pharmacophore, molecular docking and scoring with
QSAR by taking the top results identified separately by
the different methods. So to identify putative MtENR
binders first, CoMFA and CoMSIA studies were per-
formed on a training set consisting of arylamides as
MtENR inhibitors using molecular docking as alignment
strategy. Second, the as-built CoMFA and CoMSIA
models were validated by testing set. Finally, a ligand
based pharmacophore was generated using crystal struc-
ture bound conformation of potent MtENR inhibitor
Genz10850, which was then used in the virtual screening
of the Maybridge screening collection. Twenty com-
pounds with high screening scores obtained by jointly
using a series of virtual screening methods were further
supported by the CoMFA and CoMSIA models with high
predicted IC50 values.

Materials and methods

Dataset

In vitro inhibitory activity data (IC50 (μM)) of the
arylamides on MtENR, reported by Kuo et al. [5] and Xin
He et al. [8] was taken for the study. Thirty seven
molecules were selected for developing the model and the
rest of the molecules whose IC50 values reported as >100
were not considered in this study. The structures of the
compounds and their biological data are given in Table 1.
The IC50 values were converted to the corresponding pIC50

(-log IC50) and used as dependent variables in CoMFA and
CoMSIA analysis. The pIC50 values span a range of 3-log
units providing a broad and homogenous data set for
3D-QSAR study. The 3D-QSAR models were generated
using a training set of 29 molecules. Predictive power of the
resulting models was evaluated using a test set of eight
molecules (Table 1 marked with *). The test compounds
were selected randomly such that a wide range of activity in
the data set was included. At physiological pH both the
nitrogens of piperazine ring remain in unprotonated form,
therefore all the molecules were modeled in neutral state.

Molecular docking and alignment

FlexX [10] based molecular docking was carried out to get
the appropriate binding conformations of the arylamides
inhibitors and virtual screening hits into MtENR binding
pocket. All the molecules were docked into the inhibitor
binding site of MtENR crystal structure in complex with
Genz-10850 (PDB entry code 1P44) [5].

CoMFA studies

Steric and electrostatic interactions were calculated using
the Tripos force field [11] with a distance-dependent
dielectric constant at all interactions in a regularly spaced
(2Å) grid taking C.3 carbon atom as steric probe and
a single positive charge as electrostatic probe. Values of
the steric and electrostatic fields were truncated at
30.0 kcal mol−1. The minimum sigma (column filtering)
was set to 2.0 kcal mol−1 to improve the signal to noise
ratio by omitting those lattice points whose energy variation
was below this threshold. A partial least-squares (PLS)
approach [12–14], which is an extension of multiple
regression analysis, was used to derive the 3D QSAR
models in which the CoMFA descriptors were used as
independent variables, and the experimental pIC50 values
were used as dependent variables. The cross-validation with
leave-one-out (LOO) option and the SAMPLS program [15]
was applied to obtain the optimal number of components to
be used in the final analysis. After the optimal number of
components was determined, a non-cross-validated analysis
was performed without column filtering.

CoMSIA studies

In CoMSIA, a distance-dependent Gaussian-type physico-
chemical property has been adopted to avoid singularities at
the atomic positions and dramatic changes of potential
energy for those grids in the proximity of the surface. With
the standard parameters and no arbitrary cutoff limits, three
physico-chemical properties, that is, steric, electrostatic and
hydrophobic fields were calculated. The steric contribution
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Table 1 Structures and activities of arylamides used for developing CoMFA and CoMSIA models. Compounds marked as (*) belong to test set

N

O

X

n

R1 R2

Cmpds X N R1 R2 IC50 

(  µM) 
-logIC50 CoMFA 

pIC50

CoMSIA 
pIC50

1 N 0 H H 38.86 4.41 4.326 4.469 

2 N 0 4-CH3 H 16.64 4.779 4.723 4.641 

3 N 0 4-CH3 3-CF3 6.26 5.203 5.113 5.409 

4 N 0 4-CH3 3-Cl 3.07 5.513 5.524 5.397 

5 N 0 3-CH3 3-Cl 9.43 5.025 5.047 5.216 

6 N 0 3-CH3 4-NO2 15.47 4.811 4.814 4.672 

7 N 0 3,4-Me2 3-Cl 0.99 6.004 5.993 5.847 

8 N 0 3,4-Me2 3-CF3 1.85 5.733 5.714 5.832 

9 N 0 2-F 3-Cl 13.87 4.858 4.988 5.038 

10* N 0 4-F 3-Cl 9.74 5.011 5.12 5.052 

11 N 0 3-Cl 3-Cl 6.73 5.172 5.014 5.045 

12* N 0 3,4-Cl2 3-Cl 6.05 5.218 5.078 4.98 

13 N 0 3,4-Cl2 H 17.62 4.754 4.805 4.759 

14 N 1 H H 31.5 4.502 4.707 4.73 

15* C 1 3-Cl H 7.74 5.172 5.351 5.252 

16 C 1 2-F H 14.11 4.85 4.837 4.833 

17 C 1 4-CH3 H 5.16 5.287 5.29 5.09 

18 C 1 3-CH3 H 7.39 5.131 5.16 5.202 

19 N

O

N 0.40 6.398 6.573 6.767 

20 N

O

N 0.09 7.046 6.896 6.674 
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Table 1 (continued)

21 N

O

N

N
H

F

F

1.04 5.983 5.937 5.939 

22* N

O

N

F

F

1.89 5.724 6.138 6.145 

23 N

O

N

F

F

2.04 5.69 5.677 5.681 

24 N

O

N

N
H

0.16 6.796 6.864 6.561

25 
N

O

N

N
H O

H3C

0.34 6.469 6.327 6.473 

26 N

O

N

N
H

I

I

0.13 6.886 6.855 6.877 
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Table 1 (continued)

27 

N

O

N

N
H

NH

O

HO

0.28 6.553 6.566 6.433 

28 

N

O

N

N
H

NH3C

CH3

0.91 6.041 6.029 6.031 

29 
N

O

N

N
H

HNC
H

O

0.18 6.745 6.753 6.667 

30* 
N

O

N

N
H

Cl

Cl

Cl

0.17 6.770 6.425 6.537 

31 
N

O

N

N
H

O2N

0.13 6.886 6.942 7.086 

32 
N

O

N

N
H

No2

0.13 6.886 6.848 6.974 

J Mol Model (2010) 16:877–893 881



Table 1 (continued)

33* N

O

N

N
H

Br

Br

0.12 6.921 6.783 6.586 

35* 

N

O

N

N
H

HN

O

0.46 6.337 6.573 6.479 

36 
N

O

N

N
H

O

0.52 6.284 6.433 6.309 

5.87137 
N

O

N

N
H O

0.52 6.086 6.005 

34 

N

O

N

N
H

HN

O

0.59 6.229 6.168 6.269 
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was reflected by the third power of the atomic radii of the
atoms. Electrostatic properties were introduced as atomic
charges resulted from molecular docking. An atom-based
hydrophobicity was assigned according to the parameteri-
zation developed by Ghose et al. [16]. The lattice
dimensions were selected with a sufficiently large margin
(>4Å) to enclose all the binding conformations of the
inhibitors. In general, similarity indices, AF,K between the
compounds of interest were computed by placing a probe
atom at the intersections of the lattice points using Eq. 1.

Aq
F;KðjÞ ¼ �

Xn

i¼1

Wprobe;k Wike
�ar2iq ð1Þ

Where q represents a grid point, i is the summation
index over all atoms of the molecule j under computation,
Wik is the actual value of the physicochemical property k of
atom i, and Wprobe,k is the value of the probe atom. In the
present study, similarity indices were computed using a
probe atom (Wprobe,k) with charge +1, radius 1Å, hydro-
phobicity +1 and attenuation factor a of 0.3 for the
Gaussian type distance. The statistical evaluation for the
CoMSIA analyses was performed in the same way as
described for CoMFA.

3D Pharmacophore search

A 3D pharmacophore query with partial match constraints
was defined on the basis of the structural features of the
MtENR inhibitor Genz-10850 by using the crystal
structure bound conformation (PDB entry code 1P44).
The 3D pharmacophore search was performed by using
the unity flexible search protocol as implemented in
Sybyl7.1, with all options set as default [17]. In the unity
search, the conformations of the screening database were
generated on the fly by means of the Directed tweak
method [18].

Results and discussion

CoMFA and CoMSIA analysis

Comparative molecular field analysis (CoMFA) and com-
parative molecular similarity indices analysis (CoMSIA)
are 3D-QSAR methods intended to correlate the molecular
features of a series of compounds with biological activities.
CoMFA and CoMSIA do not take into account receptor
ligand interactions but rely only on the calculation of
molecular fields of the ligands and their subsequent
correlation, by PLS regression, to their biological activities.
In particular, CoMFA is based on the calculation of steric
and electrostatic fields, while CoMSIA also considers
hydrophobic, hydrogen bond acceptor and hydrogen bond

donor fields. CoMFA and CoMSIA may be extremely
sensitive to molecular alignment rules and overall consis-
tency of the molecular alignment, therefore, the determina-
tion of spatial molecular alignment is a crucial step in 3D-
QSAR studies, since the analyses are highly dependent on
the quality of the alignments [19, 20]. Thus molecular
docking studies were carried out using the program Flexx
in order to generate receptor based alignment for model
building. Combining molecular docking with 3D-QSAR
modeling offers a more interesting, integrated approach and
allows us to utilize structural information of the protein for
3D-QSAR modeling. The advantage of a docking-based
model is that we can directly superimpose the contour plots
into the protein active site. Such superimposition will also
allow us to check the correlation between the contour plots
and the corresponding receptor residues present near them.
Because the docked pose gives the bioactive conformation
of the ligands, this method helps to overcome the error that
may arise by using an incorrect conformation of the ligand.
We used X-ray structure of enzyme from the MtENR-
Genz10850 complex (PDB code-1P44) [5] for molecular
docking studies. The hydrophobic binding pocket of
MtENR is made up of key residues Gly96, Phe97, Ile102,
Met103, Phe149, Met155, Pro156, Ala157, Tyr158,
Met161, Pro193, Met199, Val203, Ile215, Leu218 and
Trp222. To ensure that the ligand orientation and the
position obtained from the docking studies were likely to
represent valid and reasonable binding modes of the
inhibitors and virtual screening hits, the FlexX program
docking parameters were first validated for the crystal
structure used (1P44). The results of docking showed that
FlexX successfully reproduced the crystal structure confor-
mation of Genz-10850 with rmsd of 0.54Å. Moreover, the
correlation between the FlexX scores and biological
activities of arylamides was also good. Highly active
compounds were found to be among the top ranking
compounds according to the FlexX scores. Molecular
docking of arylamides into MtENR binding site revealed
very clear preference for the inhibitor binding pocket and
all the compounds occupy the same spatial position as the
co-crystallized MtENR inhibitor Genz10850. Almost all of
the inhibitors bind in similar fashion with its substituted
aromatic ring alongside piperizine and piperidine scaffold
occupying the interior of the deep cleft and aromatic
substitution toward urea is extended to the entrance of the
hydrophobic binding cavity as shown in Fig. 1. The
formation of two strong hydrogen bonds between ligand
oxygen atom and active site residue Tyr158 and NADH
cofactor probably serves as the key feature that governs the
orientation of a compound within the active site. This
hydrogen bonding network seems to be a conserved feature
among all the InhA inhibitor complexes identified so far
[7]. The same hydrogen bonding network was observed in
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the crystal structure complexes of Genz-10850, triclosan
and pyrrolidine carboxamides with InhA [5, 7]. In addition
with hydrogen bonding interactions, π-π interaction
between nicotinamide ring of cofactor NADH and at least
one of the rings in the ligand contribute significantly toward
inhibitor binding to InhA active site. This π-π interaction
also seems to be conserved among the ENR’s of various
species. Some hydrophobic interactions with Phe149,
Pro193, Leu218 and Val203 are also important with respect
to inhibitor binding. All of the structural insights obtained
from molecular docking of aryl amides are consistent with
the available experimental activity data [5–8], suggesting
that the enzyme-inhibitor binding structures obtained from
the molecular docking are reasonable and can be used for
developing CoMFA and CoMSIA models.

Twenty nine of 37 MtENR inhibitors were randomly
picked up as training set for constructing the CoMFA and
CoMSIA models. The remaining eight inhibitors were used
as test set for model validation. Partial least square analysis
was carried out for the training set molecules and the results
are presented in Table 2 which shows that CoMFA model
with LOO cross-validated q2 value of 0.663 and CoMSIA
model with q2 value of 0.639 using five components was
obtained. The non cross-validated PLS analysis resulted in
conventional r2 of 0.989, F value of 405.981 and standard
error value of 0.098 for CoMFA model and r2 of 0.963, F
value of 120.871 and standard error value of 0.176 for
CoMSIA model. In CoMFA, the steric field descriptors
explain 60.9% of the variance while electrostatic field
descriptors explain 39.1% of the variance whereas in case
of CoMSIA, the steric field descriptors explain 20.2%,
electrostatic field descriptors explain 32.3%, hydrophobic
field descriptors explain 27.8% and hydrogen bond accep-
tor explain 19.7% of the variance. It has been established
that five different descriptor fields are not totally indepen-

dent of each other and that such dependency among
individual fields decreases the statistical significance of
the models [21, 22]. An evaluation of which is actually
needed for the generation of predictive model was
performed by computing all possible combination of fields.

Fig. 1 Docked conformations
of 37 arylamides bound to
MtENR used as molecular
alignment for developing
CoMFA and CoMSIA models

Table 2 Statistical results for CoMFA and CoMSIA models

CoMFA CoMSIA

PLS Statistics

q2a 0.663 0.639

r2b 0.989 0.963

Sc 0.098 0.176

Fd 405.981 120.871

Optimal componentse 5 5

Field distribution %

Steric 60.9 20.2

Electrostatic 39.1 32.3

Hydrophobic – 27.8

Hydrogen bond acceptor – 19.7

r2bootstrap
f 0.993 0.980

Sbootstrap
g 0.074 0.134

r2pred
h 0.882 0.875

Spred
i 0.240 0.247

a Cross-validated correlation coefficient
b Non-cross-validated correlation coefficient
c Standard error of estimate
d F test value
e Optimum number of components
f Bootstrap correlation coefficient
g Standard error of Bootstrapping
h Predictive correlation coefficient
i Standard error of prediction
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The model with steric, electrostatic, hydrophobic and
hydrogen bond acceptor field appeared to be superior
among all the models derived thus final CoMSIA model
was derived using these four field combinations. To further
access the robustness and statistical significance of the
derived models, bootstrap analysis for 100 runs was then
carried out for further validation of the model by statistical
sampling of the original data set to create new data sets.
Thus, the difference in the parameters calculated from the
original data and the average of the parameters calculated
from the N (=100) runs of bootstrapping sampling is a
measure of the bias of the original calculation. This yielded
higher r2bootstrap value 0.993 and 0.980 with standard error
value of 0.074 and 0.134 for CoMFA and CoMSIA
respectively and further supports the statistical validity of
the developed models. The predicted activities for the
inhibitors versus their experimental activities are listed in
Table 1 and the correlation between the predicted activities
and the experimental activities is depicted in Fig. 2a and b.
Table 2 and Fig. 2a and b demonstrate that the predicted
activities by the constructed CoMFA and CoMSIA models
are in good agreement with the experimental data, suggest-
ing that the CoMFA and CoMSIA models should have a
satisfactory predictive ability.

The eight randomly selected compounds (compounds
marked as * in Table 1) were used as test set to verify the
stability and predictive ability of the constructed CoMFA
and CoMSIA models. The predicted IC50 (pIC50) are in
good agreement with the experimental data within a
statistically tolerable error range, with a predictive correla-
tion coefficient of rpred

2=0.882 and 0.240 as the standard
error of predictions for CoMFA and rpred

2 = 0.875 and
0.247 as the standard error of predictions for CoMSIA
models (Table 2). The correlation between the CoMFA and
CoMSIA predicted activities and the experimental activities
of the test set compounds are depicted in Fig. 2a and b. The
test set results indicate that the CoMFA and CoMSIA
models would be reliably used in predicting the activity of
new compounds.

CoMFA and CoMSIA contour analysis

Since the QSAR models were built on the basis of docking,
we could overlay the 3D molecular fields or contour maps
produced by CoMFA and CoMSIA into the receptor
binding pocket, thus evaluating the complementarity of
the ligand based QSAR and our proposed model for ligand
receptor interactions. The contour maps were generated as
scalar products of coefficients and standard deviation,
associated with each CoMFA or CoMSIA column. The
maps generated depict regions having scaled coefficients
greater than 80% (favored) or less than 20% (disfavored).
In the case of CoMFA, the green contour shows favorable

steric interaction and the yellow contours show the region
where the steric group is not favored. The red contours
show favorable electronegative regions, and the blue
contour shows the region where the electropositive region
is favored. One of the most active compounds in the series
(compound 20) is shown superimposed with the CoMFA
steric and electrostatic contour maps in Fig. 3a. The green
contour region near the polyaromatic fluorene ring of
compound 20 shows that bulky substituents at this position
have favorable steric interactions. This is consistent with
the reported X-ray crystal structure of MtENR bound with
Genz-10850 (PDB ID: 1P44) where fluorene ring is
sandwiched between Phe149, Pro156, Tyr158 and Ile215
and that is why compounds 19, 24–37 having the
substituted and unsubstituted fluorene ring at similar
position have higher activity. The removal of bulky groups
at this position like in the case of compound 1–6 and
compound 9–18 lead to decreased activity when compared
with compounds with bulky poly aromatic ring. The yellow
contours are present below the plane of the fluorene ring so
there would be an unfavorable steric interaction if sub-

Fig. 2 Correlation between predicted activities and experimental
activities of training and test set compounds (a) CoMFA (b) CoMSIA
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stituents protrude in that region. This is reason for
compound 14 and compounds 15–18 with an extra methyl
group attached to piperizine and piperidine ring showing
lower inhibitory activity. A blue contour region (favorable
electropositive group) is found in overlapping piperizine
nitrogen in compound 20 as shown in Fig. 3a which shows
electropositive character is favorable for inhibitory activ-
ity at this position. The substitution of piperidine ring in
place of piperizine in compounds 15–18 leads to decrease
in activity of these compounds. Similarly, a red contour
region (favorable electronegative group) overlapping
amide carbonyl states the reason for inhibitory activity of
amides. The amide oxygen atom here is involved in
conserved hydrogen bonding interaction with side chain
oxygen of Tyr158 and 2′ oxygen of ribose moiety of
cofactor NADH.

In case of CoMSIA, we get additional insight from the
hydrophobic and hydrogen bond acceptor features. The

CoMSIA steric and electrostatic contour maps were similar
to the ones obtained from the CoMFA model. Fig. 3b shows
compound 31 superimposed on the CoMSIA hydrophobic
and hydrogen bond acceptor contour plots. In Fig. 3b, a
white contour showing an unfavorable hydrophobic interac-
tion region near amino acid residues Ile215, Leu218 and
Glu219. If any substituent extends to this region it will have
close hydrophobic clashes with Ile215 and Leu218. This
explains the lower activity of compounds 1–6 and 9–18
compared to that of compounds 19, 20, 24–37 where
hydrophobic substituents protude toward favorable hydro-
phobic interaction yellow region. The hydrogen-bond accep-
tor contour superimposed on compound 31 is shown in
Fig. 3b. The magenta contour shows a favorable hydrogen-
bond acceptor region, and the red contour shows regions in
which the hydrogen-bond acceptor is not favored. From the
contour plot, we can see that nitro group substituted at 2 and
3 position of polyaromatic fluorene ring in compounds 31

Fig. 3 (a) CoMFA steric and
electrostatic contour map with
compound 20. (b) CoMSIA
hydrophobic and hydrogen bond
acceptor contour map with
compound 31
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and 32 is present in the favorable hydrogen-bond acceptor
group region which explains the high activity of these
compounds.

3D-Pharmacophore search and molecular docking

We adopted 3D crystal structure of MtENR in complex
with potent inhibitor Genz-10850 (PDB entry code 1P44)
to generate 3D pharmacophore hypothesis. We defined the
3D pharmacophore on the basis of crystal structure bound
conformation of Genz-10850 using partial match con-
straints and grouping the pharmacophoric features into
two clusters. In the pharmacophore search, the screened
compounds were required to match at least two hydropho-
bic features from first cluster to be considered hits (Fig. 4).
The first cluster included three hydrophobic features, which
in our hypothesis form hydrophobic interactions with Phe
149, Pro193, Ile 215 and Leu 218. The second cluster
includes a hydrogen bond donor, a hydrogen bond acceptor
and a hydrophobic feature and hits were required to match
the entire features from this cluster. Hydrogen bond
acceptor is very important for MtENR inhibition as it is
involved in hydrogen bonding interaction with side chain
OH of Tyr 158 and 2′ oxygen of ribose moiety of NADH.
This particular interaction is very important and has been
conserved in most ENR’s for which the crystal structure has
been solved in complex with NADH. We have considered a
hydrogen bond donor in our pharmacophore hypothesis,
though while considering the crystal structure bound ligand
and other piperazine based compounds there was no need to
include this pharmacophore feature as it does not have
nearby interaction partners in the binding site. The nearest
acceptor atoms are side chain oxygen of Glu219 and Tyr
158, backbone oxygen of Ile 194 and carbonyl group of
cofactor NADH which are 5.3, 6.2, 6.3 and 4.6Å away,
respectively. We have included a donor here in the
pharmacophore hypothesis for two reasons, the first

reason is to look for piperizine based compounds which
actually possess MtENR activities and presence of
nitrogen rich environment is necessary for the activity
and the second and major reason is to look for a

Fig. 5 Workflow of CoMFA and CoMSIA based compound
selection. A pIC50 of 6.25 and Flexx_Score of -15.00 kJ mol−1 was
taken as cutoff for the selection of compounds. (a) CoMFA based
selection (b) CoMSIA based selection

Fig. 4 A 3D pharmacophore
query generated based on crys-
tal structure bound conformation
of Genz10850 (shown by atom
color). By using partial match
constraints, the pharmacophoric
features were grouped into two
clusters (Cluster 1: Three hy-
drophobic features and Cluster
2: Hydrogen bond donor, hy-
drogen bond acceptor and hy-
drophobic feature). During the
pharmacophore search, the hits
were required to match only two
hydrophobic features from the
first cluster. The size of sphere
denotes the steric tolerance
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Table 3 Chemical structures of putative binders and their respective docking scores, CoMFA and CoMSIA predicted activity, molecular weight
and LogP identified using virtual screening and QSAR

S.
No 

Hits Structure 
Flexx_Score 

(kJ/mol) 
CoMFA 
pIC50 

CoMSIA 
pIC50 

Mol. 
Wt 

LogP 
(o/w) 

1 HTS08262 
N

O

N

S

O

N

-31.38 6.62 6.685 479.60 5.08 

2 HTS07943 
N

O

O

O

N

-31.07 6.392 6.374 398.46 4.32 

3 HTS07936 
N

ON

O

N

-30.83 6.269 6.432 447.54 5.39 

4 HTS05698 
N

N
H

N

O

O

F

-28.98 6.332 6.486 393.46 4.40 

5 HTS07939 
NN

S

O

N

-28.57 6.462 6.885 451.59 5.36 

6 HTS09780 
N

S

N

N

O

N

N

-28.53 6.463 6.622 453.57 3.24 

7 HTS07938 

N
ON

O

N

Cl

-27.44 6.289 6.324 481.98 5.99 
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Table 3 (continued)

8 HTS05682 
N

N
N
H

O

F

-26.97 6.316 6.342 363.44 4.44 

9 HTS07942 O

N

N

O

-26.38 6.587 6.549 372.47 3.84 

10 BTB06014 N
N
H

N
H

O

F

Cl

O

Cl

F -26.34 6.516 6.689 450.27 5.34 

11 HAN00324 

N

OH

S

HN

O

Cl -26.27 6.566 6.392 436.96 5.84 

12 HTS08278 

S
O

S
O

N

N

N
H

O

-24.88 6.875 6.554 529.69 4.69 

13 HTS08766 

O
S

O

N

N

-21.85 6.281 6.314 390.51 3.86 

14 HTS08272 
O

O

S

O

N

N

-20.99 6.757 6.49 432.54 3.76 
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Table 3 (continued)

15 HTS08762 

S
O

S
O

N

N

Cl
-20.43 6.943 6.898 495.07 6.08 

16 HTS08274 

N

N

O

S

O

N

N

-19.93 6.86 6.502 394.50 2.39 

17 BTB15159 

O

OO

O
OHO

O

O

N
H

O

H

HH

-19.86 7.206 6.808 611.65 5.40 

18 HTS08761 

N

N

O

S

O

N

N

-19.82 6.88 6.633 408.53 2.72 

19 HTS09058 

N

S S

N

N

N
-16.48 6.464 6.566 404.56 4.99 

20 AW01237 
NN

Cl
N

N

N
Cl Cl -15.35 6.818 6.618 462.81 4.79 
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compound which may form additional hydrogen bonding
interactions with Glu219, Ile194 and NADH as there
exists possibilities of hydrogen bonding with these
residues. The pharmacophore hypothesis was then used
as a 3D structural query to retrieve molecules matching
3D query from Maybridge small molecule database.
Virtual screening was carried out using flex utility of
UNITY module available with Sybyl7.1. The screening
of the pharmacophore query yielded 996 hits that met
the specified requirements. All the hit compounds
retrieved from the pharmacophore based screening were
then subjected to molecular docking to the MtENR
binding site in order to select the compounds on the
basis of their ability to form favorable interactions with
InhA active site. InhA-NADH-Genz10850 ternary com-
plex (PDB entry code 1P44) was used for docking
studies. The molecular docking was carried out using
FlexX program and 30 distinct poses of each ligand in
the active site were generated. As, FlexX fails to find
docking solution of 22 out of 996 hits subjected to
molecular docking, compound pose yielding the highest
FlexX score for each 974 hits was selected for further
analysis.

Selection of putative MtENR binders

Ligand based methods of analysis such as CoMFA and
CoMSIA are widely used not only because they are not
very computationally intensive but also they can lead to
rapid generation of QSAR models from which the
biological activity of new compounds can be predicted. In
contrast, an accurate prediction of activity of untested
compounds based on the computation of binding free
energy is both complicated and lengthy. Overall, the
CoMFA and CoMSIA results of the training and test set
demonstrated good accuracy of the developed solutions,

their useful synergy, and ability to enrich for the most
active target binders. These observations encouraged us to
apply developed models to structure based virtual screening
hits for the prediction of biological activity. Thus based on
the findings derived from the developed CoMFA and
ComSIA models, the biological activity of 974 hits was
predicted with both CoMFA and CoMSIA models. As
described in the previous section, CoMFA and CoMSIA
models were based on Flexx docked poses. Therefore, in
order to apply pretrained CoMFA and CoMSIA models best
docked poses according to FlexX_Score were used. To
further expand the utility of the developed QSAR models,
we have implemented the consensus approach for selection
of putative MtENR binders taking the top results identified
separately by CoMFA, CoMSIA and Flexx scoring. The
selection of compounds is illustrated in Fig. 5. As FlexX
tries to determine the binding free energy, hits which have a
good FlexX score, i.e., more than -15 kJ mol−1 were
selected. As the moderate to highly active MtENR
inhibitors fall in –logIC50 of ~6.25 to ~7.0 so CoMFA
and CoMSIA predicted activity (pIC50) of 6.25 was taken
as cutoff for the selection of compounds. Thirty four
compounds meeting the above mentioned criteria were
then visually inspected to incorporate additional experi-
mental knowledge, i.e., (1) π stacking interactions with the
nicotinamide ring of the cofactor NADH, (2) hydrogen
bonding with 2′ hydroxyl moiety of the ribose and hydroxyl
group of active site residue Tyr 158 and (3) hydrophobic
interactions with Phe149, Pro193, Leu218 and Val203.
After the final visual inspection, we formed a list of 20
compounds out of which seven compounds belong to the
arylamides class of chemical compounds which are known
to possess MtENR inhibitory activity. Thus, our virtual
screening study outlines novel point of substitution for
rational design of arylamides for further improving the
biological activity. The remaining 13 compounds could not

Fig. 6 Binding mode of
HTS08762 (atom color) shown
with Genz10850 (brown).
Dashed lines indicate hydrogen
bond between HTS08762 and
Tyr158 and NADH
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be found in the scientific literature as ever tested against
MtENR. The structures of the selected compounds are
shown in Table 3, together with their corresponding
Flexx_Score, CoMFA and CoMSIA predicted activity,
molecular weight and calculated log P values. The
promising compounds share common pharmacophoric
features like a nitrogen-rich scaffold (sulfonyl piperizine,
pyrazolopiperidine, amides, benzylamides, diazepane, ben-
zyl ester etc.) and hydrophobic group connected to the
scaffold. Among these sulfonyl piperizine scaffold forms
the major class and could be exploited for further
optimization. The predicted binding mode of a sulfonyl
piperizine compound HTS08762 displaying high CoMFA
and CoMSIA predicted activity is described in Fig. 6
along with the crystal structure bound conformation of
inhibitor Genz-10850 with MtENR. Like the bound
conformation of Genz-10850 shown in brown color in
Fig. 6, HTS08762 is anchored to the cavity by combina-
tion of π stacking interactions with the nicotinamide ring
of the cofactor NADH and hydrogen bonding interaction
between sulfonyl oxygen and sidechain oxygen of Tyr158
and 2′ hydroxyl of the ribose. Along with these,
hydrophobic interactions of ligand with Phe149, Pro193,
Leu218 and Val203 also act as stabilizing force for protein
ligand binding.

Conclusions

Using available information on 37 known arylamides as
MtENR inhibitors, we have developed receptor based
CoMFA and CoMSIA structure–activity models using
docked poses for molecular alignment. The contour maps
from receptor-based both CoMFA and CoMSIA model
shows that docking-based models generally match well
with the active site of MtENR. The resulting CoMFA
and CoMSIA models combined with structure-based
virtual screening allowed identification of several scaf-
folds like sulfonyl piperizine, pyrazole piperidine, dia-
zepane etc. that have not been previously characterized in
the scientific literature as MtENR inhibitors. Since
MtENR represents a prospective drug target against
tuberculosis, the identified putative MtENR binders can
be characterized as potential therapeutic agents laying a
foundation for future lead identification and optimization
studies.

Acknowledgments This manuscript is CDRI communication num-
ber 7706. This work was supported by the grants from Council of
Scientific and Industrial Research (CSIR-India) funded network
project NWP0034 (Validation of identified screening models and
development of new alternative models for evaluation of new drug
entities). Ashutosh Kumar thanks CSIR for fellowship.

References

1. Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and
processing of mycolic acids in Mycobacterium tuberculosis. Clin
Microbiol Rev 18:81–101

2. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS,
Wilson T, Collins D, de Lisle G, Jacobs WR (1994) inhA, a gene
encoding a target for isoniazid and ethionamide in Mycobacterium
tuberculosis. Science 263:227–230

3. Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-
peroxidase gene and isoniazid resistance of Mycobacterium
tuberculosis. Nature 358:591–593

4. Escalante P, Ramaswamy S, Sanabria H, Soini H, Pan X, Valiente-
Castillo O, Musser JM (1998) Genotypic characterization of drug-
resistant Mycobacterium tuberculosis isolates from Peru. Tuber
Lung Dis 79:111–118

5. Kuo MR, Morbidoni HR, Alland D, Sneddon SF, Gourlie BB,
Staveski MM, Leonard M, Gregory JS, Janjigian AD, Yee C,
Musser JM, Kreiswirth B, Iwamoto H, Perozzo R, Jacobs WR,
Sacchettini JC, Fidock DA (2003) Targeting tuberculosis and
malaria through inhibition of Enoyl reductase: compound activity
and structural data. J Biol Chem 278:20851–20859

6. Sullivan TJ, Truglio JJ, Boyne ME, Novichenok P, Zhang X,
Stratton CF, Li H, Kaur T, Amin A, Johnson F, Slayden RA,
Kisker C, Tonge PJ (2006) High affinity InhA inhibitors with
activity against drug-resistant strains of Mycobacterium tuberculosis.
ACS Chem Biol 1:43–53

7. He X, Alian A, Stroud R, Ortiz de Montellano PR (2006)
Pyrrolidine carboxamides as a novel class of inhibitors of enoyl
acyl carrier protein reductase from Mycobacterium tuberculosis. J
Med Chem 49:6308–6323

8. He X, Alian A, Ortiz de Montellano PR (2007) Inhibition of
the Mycobacterium tuberculosis enoyl acyl carrier protein
reductase InhA by arylamides. Bioorg Med Chem 15:6649–
6658

9. Kumar A, Chaturvedi V, Bhatnagar S, Sinha S, Siddiqi MI (2009)
Knowledge based identification of potent antitubercular compounds
using structure based virtual screening and structure interaction
fingerprints. J Chem Inf Model 49:35–42

10. Rarey M, Kramer B, Lengauer T, Klebe GA (1996) Fast flexible
docking method using an incremental construction algorithm. J
Mol Biol 261:470–489

11. Clark MC, Cramer RD III, van Opden Bosch N (1989) Validation
of the General Purpose Tripose 5.2 Force Field. J Comput Chem
10:982–1012

12. Wold S, Ruhe A,Wold H, DunnWJI (1984) The collinearity problem
in linear regression. the partial least squares (PLS) approach to
generalized inverses. SIAM J Sci Stat Comput 5:735–743

13. Wold S, Albano C, Dunn WJ III, Edlund U, Esbensen K, Geladi P,
Hellberg S, Johanson E, Lindberg W, Sjostrom M (1984) Multivar-
iate data analysis in chemistry. NATO ASI Ser Ser C 138:17–95

14. Clark M, Cramer RD III (1993) The Probability of Chance
Correlation Using Partial Least Squares (PLS). Quant Struct-Act
Relat 12:137–145

15. Bush BL, Nachbar RB (1993) Sample-distance partial least
squares: PLS optimized for many variables, with application to
CoMFA. J Comput-Aided Mol Des 7:587–619

16. Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based
scoring function to predict protein-ligand interactions. J Mol Biol
295:337–356

17. SYBYL Molecular Modeling System, Version 7.1 (2005) Tripos
Inc, St Louis, MO

18. Hurst T (1994) Flexible 3D searching - the directed tweak
technique. J Chem Inf Comput Sci 34:190–196

892 J Mol Model (2010) 16:877–893



19. Salum LB, Polikarpov I, Andricopulo AD (2007) Structural and
Chemical Basis for Enhanced Affinity and Potency for a Large
Series of Estrogen Receptor Ligands: 2D and 3D QSAR Studies. J
Mol Graphics Modell 26:434–442

20. Honorio KM, Garratt RC, Polikarpov I, Andricopulo AD (2007)
3D QSAR Comparative Molecular Field Analysis on Nonsteroidal
Farnesoid X Receptor Activators. J Mol Graphics Modell 25:921–
927

21. Bringmann G, Rummey C (2003) 3D QSAR Investigations on
antimalarial naphthylisoquinoline alkaloids by comparative molecular
similarity indices analysis (CoMSIA), based on different alignment
approaches. J Chem Inf Comput Sci 43:304–316

22. Bohm M, Sturzebecher J, Klebe G (1999) 3D QSAR analyses
using CoMFA and CoMSIA to elucidate selectivity differences of
inhibitors binding to trypsin, thrombin, and factor Xa. J Med
Chem 42:458–477

J Mol Model (2010) 16:877–893 893


	Receptor based 3D-QSAR to identify putative binders of Mycobacterium tuberculosis Enoyl acyl carrier protein reductase
	Abstract
	Introduction
	Materials and methods
	Dataset
	Molecular docking and alignment
	CoMFA studies
	CoMSIA studies
	3D Pharmacophore search

	Results and discussion
	CoMFA and CoMSIA analysis
	CoMFA and CoMSIA contour analysis
	3D-Pharmacophore search and molecular docking
	Selection of putative MtENR binders

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


